



### **Mastery Professional Development**

Multiplication and Division

## 2.29 Decimal place-value knowledge, multiplication and division

Teacher guide | Year 6

### **Teaching point 1:**

PDF

To multiply a number by 10/100/1,000, move the digits one/two/three places to the left; to divide a number by 10/100/1,000, move the digits one/two/three places to the right.

### **Teaching point 2:**

Measures can be converted from one unit to another using knowledge of multiplication and division by 10/100/1,000.

#### **Overview of learning**

In this segment children will:

- review their knowledge of multiplying whole-number multiplicands by 10 or 100, and extend to multiplication by 1,000, generalising about moving the digits of the multiplicand one/two/three places to the left, respectively
- review their knowledge of:
  - dividing multiples of 10 by 10
  - dividing multiples of 100 by 100

and extend to division of multiples of 1,000 by 1,000, generalising about moving the digits of the dividend one/two/three places to the right, respectively

- review the equivalence of:
  - dividing by 10 and multiplying by 0.1
  - dividing by 100 and multiplying by 0.01

and extend to an understanding of the equivalence of dividing by 1,000 and multiplying by 0.001

- multiply and divide by 10, 100 and 1,000 for calculations involving decimal numbers with up to three decimal places (crossing the '1' boundary), e.g.:
  - $2 \div 100 = 2 \times 0.01 = 0.02$
  - $0.02 \times 1,000 = 20$
  - $25 \div 10 = 25 \times 0.1 = 2.5$
  - $0.092 \times 1,000 = 92$
- convert between metric units of measure.

*Teaching point 1* explores strategies for multiplying and dividing by 10, 100 and 1,000. Place-value charts and the Gattegno chart are used to draw attention to the difference in value, and the position of the digits, before and after multiplication/division. The focus is on developing efficient calculation strategies by bringing together and extending learning from the following segments:

- Spine 1: Number, Addition and Subtraction, segments 1.23 and 1.24
- segment 2.13 Calculation: multiplying and dividing by 10 or 100
- segment 2.19 Calculation: ×/÷ decimal fractions by whole numbers.

In *Teaching point 2*, these calculation strategies are applied in the context of converting between metric units of measure, including length, mass and capacity.

As discussed in segment 2.19, Overview of learning, when, for example, a multiplicand is multiplied by ten (e.g.  $1.5 \times 10 = 15$ ), we can interpret the effect on the multiplicand in two possible ways. We can say that the digits have moved one place to the left, or we can say that the decimal point has moved one place to the right. These actions are equivalent. Throughout *Spine 2*, when multiplying or dividing by a power of ten, we refer to movement of the digits, not to movement of the decimal point.

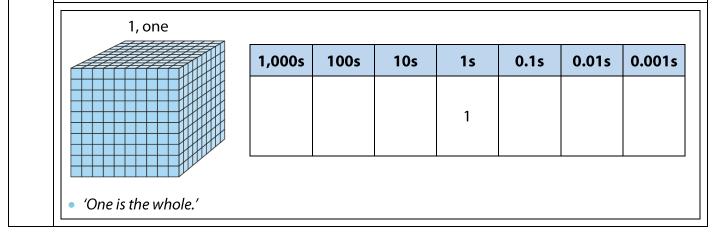
2019 pilot

An explanation of the structure of these materials, with guidance on how teachers can use them, is contained in this NCETM podcast: www.ncetm.org.uk/primarympdpodcast. The main message in the podcast is that the materials are principally for professional development purposes. They demonstrate how understanding of concepts can be built through small coherent steps and the application of mathematical representations. Unlike a textbook scheme they are not designed to be directly lifted and used as teaching materials. The materials can support teachers to develop their subject and pedagogical knowledge and so help to improve mathematics teaching in combination with other high-quality resources, such as textbooks.

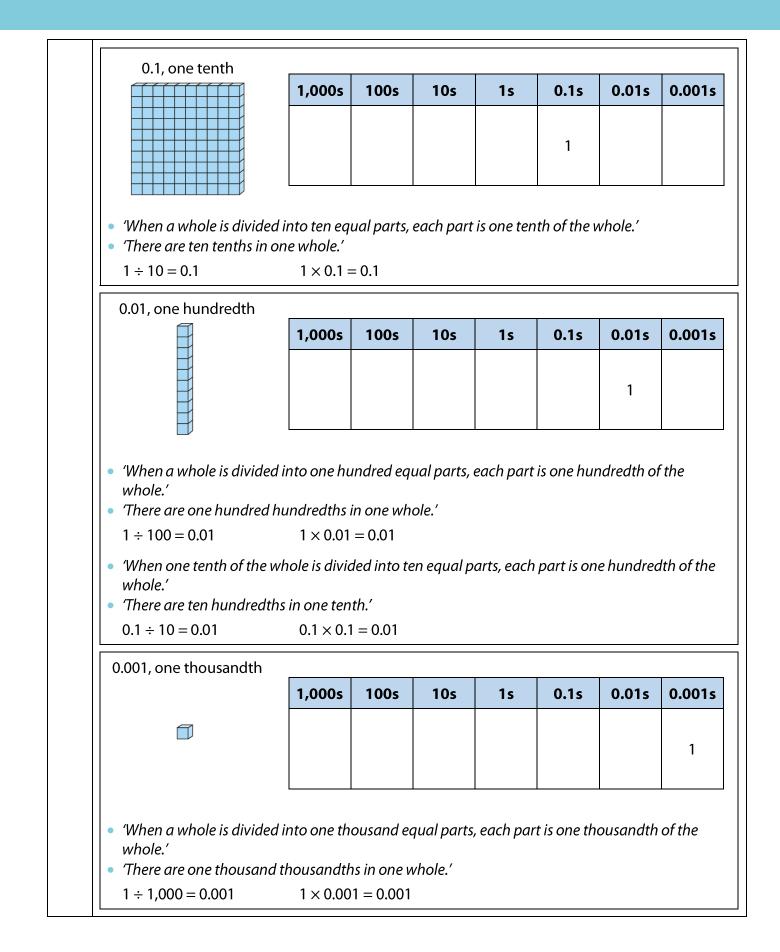
#### **Teaching point 1:**

To multiply a number by 10/100/1,000, move the digits one/two/three places to the left; to divide a number by 10/100/1,000, move the digits one/two/three places to the right.

#### Steps in learning


- 1:1 Children have already applied their understanding of place value to multiply whole numbers by 10 or by 100, and to divide multiples of 10/100 by 10/100 (segment 2.13 Calculation: multiplying and dividing by 10 or 100). They have also learnt the equivalence of:
  - multiplying by 0.1 and dividing by 10
  - multiplying by 0.01 and dividing by 100

(segment 2.19 Calculation:  $\times/$ ÷ decimal fractions by whole numbers).


In this teaching point children will draw on this knowledge, alongside their understanding of tenths, hundredths and thousandths (from *Spine 1: Number, Addition and Subtraction*, segments *1.23* and *1.24*) to multiply and divide *any* number by 10, 100 or 1,000, including 'bridging 1' (e.g.  $30 \div 1,000 = 0.03$ ).

Begin by briefly reviewing children's understanding of tenths, hundredths and thousandths, including how they are represented on a place-value chart, and how they are related to one another (for more guidance, see *Spine 1*, segments *1.23* and *1.24*). Also recap the idea of 'movement is magnitude' on the place-value chart (see *Spine 1*, segment *1.24*, step *2:1*), and review the relationships between the different powers of ten using the Gattegno chart.

Write division equations, as shown below, connecting each quantity (0.1, 0.01, 0.001) to the whole (1). Then use children's understanding that dividing by 10/100 is equivalent to multiplying by 0.1/0.01 to write the equivalent multiplication equations, extending this understanding to multiplying by 0.001/dividing by 1,000.



2019 pilot



|     | <ul> <li>of the whole.'</li> <li>'There are ten thousandths in one hundredth.'</li> <li>0.01 ÷ 10 = 0.001</li> <li>0.01 × 0.1 = 0.001</li> <li>When one tenth of the whole is divided into one hundred equal parts, each part is one thousandth of the whole.'</li> <li>'There are one hundred thousandths in one tenth.'</li> <li>0.1 ÷ 100 = 0.001</li> <li>0.1 × 0.01 = 0.001</li> </ul> |                                                                                                                       |                                                                                                   |                                                                                 |                                                                       |                                                                                               |                                          |                                                                     |                                                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|
|     | 1,000                                                                                                                                                                                                                                                                                                                                                                                       | 2,000                                                                                                                 | 3,000                                                                                             | 4,000                                                                           | 5,000                                                                 | 6,000                                                                                         | 7,000                                    | 8,000                                                               | 9,000                                           |
|     | 100                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                   | 300                                                                                               | 400                                                                             | 500                                                                   | 600                                                                                           | 700                                      | 800                                                                 | 900                                             |
|     | 10                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                    | 30                                                                                                | 40                                                                              | 50                                                                    | 60                                                                                            | 70                                       | 80                                                                  | 90                                              |
|     | 1                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                     | 3                                                                                                 | 4                                                                               | 5                                                                     | 6                                                                                             | 7                                        | 8                                                                   | 9                                               |
|     | 0.1                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                   | 0.3                                                                                               | 0.4                                                                             | 0.5                                                                   | 0.6                                                                                           | 0.7                                      | 0.8                                                                 | 0.9                                             |
|     | 0.01                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                  | 0.03                                                                                              | 0.04                                                                            | 0.05                                                                  | 0.06                                                                                          | 0.07                                     | 0.08                                                                | 0.09                                            |
|     | 0.001                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                 | 0.003                                                                                             | 0.004                                                                           | 0.005                                                                 | 0.006                                                                                         | 0.007                                    | 0.008                                                               | 0.009                                           |
| 1:2 | <ul> <li>the left, an places to t</li> <li>6 × 100, 60</li> <li>and dividin</li> <li>Then extent</li> <li>multiplition</li> <li>division</li> <li>number</li> <li>Generalise</li> </ul>                                                                                                                                                                                                     | nd when we<br>he right; yc<br>20 ÷ 100 and<br>ng by 10 or 1<br>nd this und<br>cation of a<br>of a multip<br>by 0.001. | e divide by<br>ou can use v<br>d 600 × 0.01<br>100).<br>erstanding<br>single-digit<br>le-of-1,000 | 10/100 (or<br>whole-num<br>(for more<br>to:<br>to:<br>t number b<br>by 1,000, a | multiply by<br>ober calcula<br>guidance, s<br>by 1,000<br>and the equ | 0 we move<br>y 0.1/0.01) v<br>ations to re<br>see segmer<br>uivalent mu<br><b>e digits mo</b> | we move th<br>mind child<br>at 2.13 Calc | ne digits on<br>ren of this,<br><i>ulation: mu</i><br>n of the sing | ie/two<br>e.g.<br><i>Itiplying</i><br>gle-digit |

|                                                          | 1,000s                                                                 | 100s                          | 10s                          | 1s                                          | 0.1s                    | 0.01s        | 0.001s                       |        |
|----------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|------------------------------|---------------------------------------------|-------------------------|--------------|------------------------------|--------|
|                                                          |                                                                        |                               |                              | 6                                           |                         |              |                              |        |
|                                                          | 6                                                                      | 0                             | 0                            | 0                                           |                         |              |                              | ↓×1,00 |
|                                                          | 6                                                                      | ×                             |                              | 1,000                                       |                         | =            | 6,0                          | 00     |
| • 'What is th<br>"6" in six?'                            | e value of t                                                           | he                            |                              |                                             |                         |              | 'What is th<br>"6" in six th |        |
| • 'six'<br>6                                             |                                                                        |                               |                              |                                             |                         |              | • 'six thou<br>6,000         | isand' |
|                                                          |                                                                        |                               |                              |                                             |                         |              | -,                           |        |
| <i>'We had six <u>c</u></i><br>Dividing by 1,0           | 00 / multip                                                            | olying by                     | 0.001 – p                    | blace-value                                 |                         |              |                              |        |
|                                                          |                                                                        |                               |                              |                                             | e chart:<br><b>0.1s</b> | 0.01s        | 0.001s                       |        |
| Dividing by 1,0                                          | 00 / multip                                                            | olying by                     | 0.001 – p                    | blace-value                                 |                         | 0.01s        | 0.001s                       |        |
|                                                          | 00 / multij<br><b>1,000s</b>                                           | olying by<br><b>100s</b>      | 0.001 – p<br><b>10</b> s     | blace-value                                 |                         | 0.01s        | 0.001s                       | ↓×0.00 |
| Dividing by 1,0<br>÷ 1,000↓                              | 00 / multij<br><b>1,000s</b>                                           | olying by<br><b>100s</b>      | 0.001 – p<br><b>10</b> s     | olace-value                                 |                         | <b>0.01s</b> | 0.001s                       | ·      |
| Dividing by 1,0<br>÷ 1,000↓                              | 00 / multip<br><b>1,000s</b><br>6                                      | olying by<br><b>100s</b><br>0 | 0.001 – p<br><b>10s</b><br>0 | olace-value<br><b>1s</b><br>0<br>6          |                         |              |                              |        |
| Dividing by 1,0<br>÷ 1,000↓                              | 00 / multip<br>1,000s<br>6<br>,000<br>,000<br>e value of t             | olying by<br>100s<br>0<br>÷   | 0.001 – p<br><b>10s</b><br>0 | 0lace-value<br><b>1s</b><br>0<br>6<br>1,000 |                         | =            | 6                            |        |
| Dividing by 1,0<br>÷ 1,000↓<br><b>6</b><br>• 'What is th | 00 / multip<br>1,000s<br>6<br>,000<br>,000<br>e value of t<br>ousand?' | olying by<br>100s<br>0<br>÷   | 0.001 – p<br><b>10s</b><br>0 | 0lace-value<br><b>1s</b><br>0<br>6<br>1,000 |                         | =            | 6<br>6<br>What is th         |        |

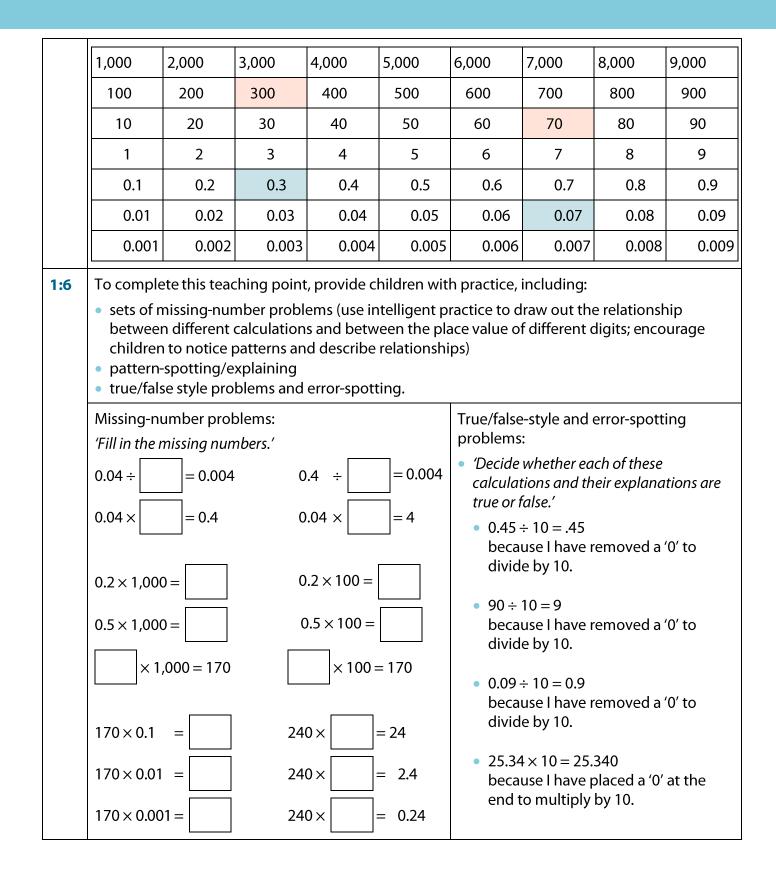
| 1,000                                                                                              | 2,000                                                                           | 3,000                    | 4,000                                                                                            | 5,000                                                             | 6,000                    | 7,000                                                                        | 8,000                                     | 9,000  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|-------------------------------------------|--------|
| 100                                                                                                | 200                                                                             | 300                      | 400                                                                                              | 500                                                               | 600                      | 700                                                                          | 800                                       | 900    |
| 10                                                                                                 | 20                                                                              | 30                       | 40                                                                                               | 50                                                                | 60                       | 70                                                                           | 80                                        | 90     |
| 1                                                                                                  | 2                                                                               | 3                        | 4                                                                                                | 5                                                                 | 6                        | 7                                                                            | 8                                         | 9      |
| 0.1                                                                                                | 0.2                                                                             | 0.3                      | 0.4                                                                                              | 0.5                                                               | 0.6                      | 0.7                                                                          | 0.8                                       | 0.9    |
| 0.01                                                                                               | 0.02                                                                            | 0.03                     | 0.04                                                                                             | 0.05                                                              | 0.06                     | 0.07                                                                         | 0.08                                      | 0.09   |
| 0.001                                                                                              | 0.002                                                                           | 0.003                    | 0.004                                                                                            | 0.005                                                             | 0.006                    | 0.007                                                                        | 0.008                                     | 0.00   |
| Begin with                                                                                         |                                                                                 |                          |                                                                                                  |                                                                   |                          |                                                                              | 2                                         |        |
|                                                                                                    | of a single<br>ligit numbe                                                      | •                        | •                                                                                                |                                                                   | nd the equ               | ivalent mu                                                                   | ltiplication                              | of the |
|                                                                                                    | •                                                                               | •                        | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,      |                                                                   |                          |                                                                              |                                           |        |
| • $1 \div 10 = 1 \times 0.1 = 0.1$<br>$2 \div 10 = 2 \times 0.1 = 0.2$<br>:                        |                                                                                 |                          |                                                                                                  |                                                                   |                          |                                                                              |                                           |        |
|                                                                                                    | $00 = 1 \times 0.0$                                                             |                          |                                                                                                  |                                                                   |                          |                                                                              |                                           |        |
| 2 ÷ 10                                                                                             | $\begin{array}{c} 00 = 2 \times 0.0 \\ \vdots \end{array}$                      | 1 = 0.02                 |                                                                                                  |                                                                   |                          |                                                                              |                                           |        |
| • 1÷1,                                                                                             | 000 = 1 × 0                                                                     | .001 = 0.00              | 1                                                                                                |                                                                   |                          |                                                                              |                                           |        |
|                                                                                                    | $nnn - 2 \times n$                                                              | .001 = 0.00              | 2                                                                                                |                                                                   |                          |                                                                              |                                           |        |
| 2÷1,                                                                                               | 000 = 2 × 0<br>:                                                                |                          |                                                                                                  |                                                                   |                          |                                                                              |                                           |        |
| (as indic                                                                                          | :<br>cated, in ea                                                               |                          |                                                                                                  |                                                                   |                          | •                                                                            | d of '1' befo                             | ore    |
| (as indio<br>moving<br>• multipli                                                                  | ÷                                                                               | /multiplica<br>whole num | tion of othe<br>ober of tent                                                                     | er single-di<br>:hs/hundre                                        | git numbei<br>dths/thous | rs)                                                                          |                                           |        |
| (as india<br>moving<br>multipli<br>tenths/ł<br>0.001                                               | :<br>ated, in ea-<br>to division<br>cation of a<br>nundredths<br>× 10           | /multiplica<br>whole num | tion of othe<br>ber of tent<br>ths) by 10/<br>0.01 ×                                             | er single-di<br>hs/hundre<br>100/1,000;<br>10                     | git numbei<br>dths/thous | rs)<br>andths (frc<br>• 0.1 × 1                                              | om one to r<br>0                          |        |
| (as indic<br>moving<br>• multipli<br>tenths/ł                                                      | :<br>ated, in ea-<br>to division<br>cation of a<br>nundredths<br>× 10           | /multiplica<br>whole num | tion of othe<br>aber of tent<br>ths) by 10/                                                      | er single-di<br>hs/hundre<br>100/1,000;<br>10                     | git numbei<br>dths/thous | rs)<br>andths (fro                                                           | om one to r<br>0                          |        |
| (as indic<br>moving<br>multipli<br>tenths/ł<br>0.001<br>0.002                                      | :<br>ated, in ea-<br>to division<br>cation of a<br>nundredths<br>× 10           | /multiplica<br>whole num | tion of othe<br>ber of tent<br>ths) by 10/<br>0.01 ×                                             | er single-di<br>hs/hundre<br>100/1,000;<br>10<br>10               | git numbei<br>dths/thous | rs)<br>andths (frc<br>• 0.1 × 1                                              | om one to r<br>0<br>0                     |        |
| (as indic<br>moving<br>• multipli<br>tenths/l<br>• 0.001<br>0.002<br>:<br>• 0.001                  | :<br>to division<br>cation of a<br>nundredths<br>× 10<br>× 10                   | /multiplica<br>whole num | tion of othe<br>ber of tent<br>ths) by 10/<br>• 0.01 ×<br>0.02 ×<br>i                            | er single-di<br>hs/hundre<br>100/1,000;<br>10<br>10               | git numbei<br>dths/thous | rs)<br>andths (frc<br>• 0.1 × 1<br>0.2 × 1<br>:                              | om one to r<br>0<br>0<br>00               |        |
| (as india<br>moving<br>multipli<br>tenths/ł<br>0.001<br>0.002<br>i<br>0.001<br>0.002<br>i          | i<br>to division<br>cation of a<br>nundredths<br>× 10<br>× 10<br>× 100<br>× 100 | /multiplica<br>whole num | tion of othe<br>ber of tent<br>ths) by 10/<br>• 0.01 ×<br>0.02 ×<br>:<br>• 0.01 ×<br>0.02 ×<br>: | er single-di<br>hs/hundre<br>100/1,000;<br>10<br>10<br>100        | git numbei<br>dths/thous | rs)<br>andths (frc<br>• 0.1 × 1<br>0.2 × 1<br>:<br>• 0.1 × 1<br>0.2 × 1<br>: | om one to r<br>0<br>0<br>00<br>00         |        |
| (as indic<br>moving<br>multipli<br>tenths/l<br>0.001<br>0.002<br>i<br>0.001<br>0.002<br>i<br>0.001 | :<br>to division<br>cation of a<br>nundredths<br>× 10<br>× 10<br>× 100          | /multiplica<br>whole num | tion of othe<br>ber of tent<br>ths) by 10/<br>• 0.01 ×<br>0.02 ×<br>:<br>• 0.01 ×                | er single-di<br>hs/hundre<br>100/1,000;<br>10<br>10<br>100<br>100 | git numbei<br>dths/thous | rs)<br>andths (frc<br>• 0.1 × 1<br>0.2 × 1<br>:<br>• 0.1 × 1                 | om one to r<br>0<br>0<br>00<br>00<br>,000 |        |

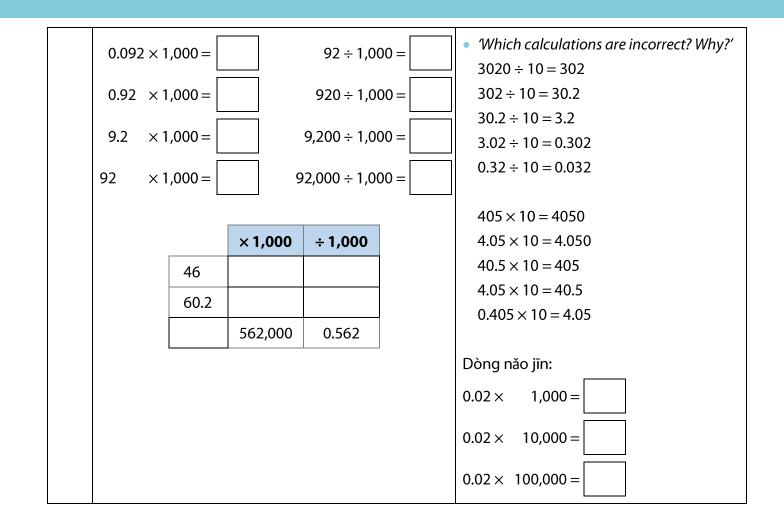
'When a number is multiplied by ten, the digits move one place to the left.' 'When a number is divided by ten, the digits move one place to the right.' • 'Dividing by ten is equivalent to multiplying by one tenth.' • 'When a number is multiplied by 0.1/one tenth, the digits move one place to the right.' 'When a number is multiplied by one hundred, the digits move two places to the left.' 'When a number is divided by one hundred, the digits move two places to the right.' • 'Dividing by one hundred is equivalent to multiplying by one hundredth.' • *'When a number is multiplied by 0.01/one hundredth, the digits move two places to* the right.' Initially use place-value charts, so children can clearly see how the digits are moving, but progress to working without this support. If any children struggle with left and right, encourage them to focus on the position of the digits; ask 'Are the digits moving so that the number becomes larger or smaller?' Draw attention to the placement of the digits relative to the decimal point, and the value of the digits, before and after each calculation has been carried out. Ensure children understand when they need to include zeros as place-value holders. Continue to review the calculations on the Gattegno chart. Example 1 – division of a single-digit number by 100 / multiplication by 0.01: 'We are dividing by one hundred / multiplying by 0.01, so we need to move the digits two places to the <u>right</u>.' 1,000s 100s 10s **1s** 0.1s 0.01s 0.001s 8 ÷100 ↓ ↓×0.01 0 0 8 8 ÷ 100 0.08 = 0.01 8 0.08 Х = 'What is the value of the • *What is the value of the* "8" in eight?" "8" in zero-point-zeroeight?' • 'eight' 'eight hundredths/ 8 zero-point-zeroeight'

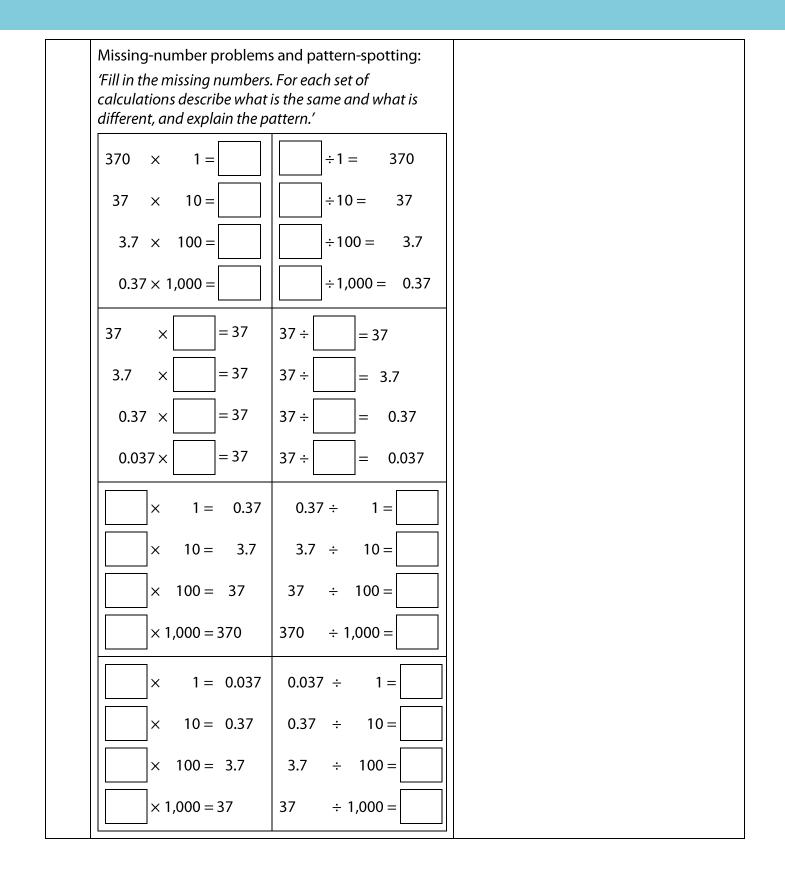
Keep using the generalisation from the previous step, and the equivalent generalisations for

multiplying and dividing by 10 and 100:

#### 'We had eight ones. We now have eight hundredths.'


8


| 1,000                                                        | 2,000                                                                                             | 3,000                                                                                   | 4,000                                               | 5,000                                             | 6,000                                   | 7,000                                                                                                | 8,000                                                                                                          | )                           | 9,000                               |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|
| 100                                                          | 200                                                                                               | 300                                                                                     | 400                                                 | 500                                               | 600                                     | 700                                                                                                  | 800                                                                                                            | )                           | 900                                 |
| 10                                                           | 20                                                                                                | 30                                                                                      | 40                                                  | 50                                                | 60                                      | 70                                                                                                   | 80                                                                                                             | )                           | 90                                  |
| 1                                                            | 2                                                                                                 | 3                                                                                       | 4                                                   | 5                                                 | 6                                       | 7                                                                                                    | 8                                                                                                              | 3                           | 9                                   |
| 0.1                                                          | 0.2                                                                                               | .2 0.3 0.4 0.5 0.6 0.7                                                                  |                                                     | C                                                 | ).8                                     | 0.9                                                                                                  |                                                                                                                |                             |                                     |
| 0.01                                                         | 0.02                                                                                              | 0.03                                                                                    | 0.04                                                | 0.05                                              | 0.06                                    | 0.07                                                                                                 | 7 C                                                                                                            | 0.08                        | 0.09                                |
| 0.001                                                        | 0.002                                                                                             | 0.003                                                                                   | 0.004                                               | 0.005                                             | 0.006                                   | 0.00                                                                                                 | 07 C                                                                                                           | 0.008                       | 0.00                                |
|                                                              | 1,00                                                                                              | 00s 100s                                                                                |                                                     | <b>1</b> s                                        |                                         | 5                                                                                                    | 0.001s                                                                                                         | ↓×                          | 1,000                               |
|                                                              | 1,00                                                                                              |                                                                                         | 103                                                 | 15                                                | 0.15                                    |                                                                                                      | 0.0015                                                                                                         |                             |                                     |
|                                                              |                                                                                                   |                                                                                         | 5                                                   | 0                                                 | 0                                       | 0                                                                                                    |                                                                                                                | ↓ × ′                       | 1,000                               |
|                                                              |                                                                                                   |                                                                                         |                                                     |                                                   |                                         |                                                                                                      |                                                                                                                |                             |                                     |
| [                                                            |                                                                                                   |                                                                                         |                                                     |                                                   |                                         | I                                                                                                    |                                                                                                                | J                           |                                     |
|                                                              | 0.05                                                                                              |                                                                                         | ×                                                   | 1,000                                             | =                                       | =                                                                                                    | 50                                                                                                             | )<br>)                      |                                     |
| "5" in<br>• 'five                                            | t is the valu<br>zero-point-<br>e hundredti<br>o-point-zer                                        | e of the<br>zero-five?'<br>hs/<br>o-five'                                               |                                                     |                                                   |                                         | • ′M<br>"5                                                                                           | <b>5(</b><br>/hat is th<br>″ in fifty?<br>′five ten:<br>50                                                     | e valu                      |                                     |
| "5" in<br>• 'five<br>zere                                    | t is the valu<br>zero-point-<br>e hundredti<br>o-point-zer                                        | e of the<br>zero-five?'<br>hs/<br>o-five'                                               | X<br>d five <u>hundr</u>                            |                                                   |                                         | • ′M<br>"5                                                                                           | /hat is th<br>″ in fifty?<br>′five ten                                                                         | e valu                      |                                     |
| "5" in<br>• 'five<br>zere                                    | t is the valu<br>zero-point-<br>e hundredti<br>o-point-zer                                        | e of the<br>zero-five?'<br>hs/<br>o-five'                                               |                                                     | r <u>edths</u> . We r                             |                                         | • 'M<br>"5<br>•<br>ve <u>tens</u> .'                                                                 | /hat is th<br>″ in fifty?<br>′five ten                                                                         | e valu<br>v<br>s/fifty      |                                     |
| "5" in<br>• 'five<br>zere<br>0.0                             | t is the valu<br>zero-point-<br>e hundredti<br>o-point-zer<br>5                                   | e of the<br>zero-five?'<br>hs/<br>o-five'<br>'We had                                    | d five <u>hundr</u>                                 |                                                   | now have fi                             | • ′M<br>"5                                                                                           | /hat is th<br>" in fifty?<br>'five ten:<br>50                                                                  | s/fifty                     | ,,<br>                              |
| <i>"5" in</i><br>• <i>'five</i><br><i>zere</i><br>0.0        | t is the valu<br>zero-point-<br>e hundredti<br>o-point-zer<br>5<br>2,000                          | e of the<br>zero-five?'<br>hs/<br>o-five'<br>'We hat<br>3,000                           | d five <u>hundı</u><br>4,000                        | <u>redths</u> . We r                              | now have fi<br>6,000                    | • 'W<br>"5<br>ve <u>tens</u> .'<br>7,000                                                             | /hat is th<br>" in fifty?<br>'five ten:<br>50<br>8,000                                                         | e valu<br>s/fifty           | , <sup>,</sup><br>9,000             |
| "5" in<br>• 'five<br>2ere<br>0.0                             | t is the valu<br>zero-point-<br>e hundredti<br>o-point-zer<br>5<br>2,000<br>200                   | e of the<br>zero-five?'<br>'hs/<br>o-five'<br>'We had<br>3,000<br>300                   | <i>d five <u>hundi</u><br/>4,000<br/>400</i>        | r <u>edths</u> . We r<br>5,000<br>500             | now have fi<br>6,000<br>600             | • 'M<br>"5<br>ve <u>tens</u> .'<br>7,000<br>700                                                      | /hat is th<br>" in fifty?<br>'five ten:<br>50<br>8,000                                                         | e valu<br>s/fifty<br>)<br>) | ,'<br>9,000<br>900                  |
| "5" in<br>• 'five<br>zere<br>0.0<br>1,000<br>100<br>10       | t is the valu<br>zero-point-<br>e hundredti<br>o-point-zer<br>5<br>2,000<br>200<br>20             | e of the<br>zero-five?'<br>'hs/<br>o-five'<br>'We had<br>3,000<br>300<br>300            | <i>d five <u>hundi</u><br/>4,000<br/>400<br/>40</i> | r <u>edths</u> . We r<br>5,000<br>500<br>500      | now have fi<br>6,000<br>600<br>60       | • 'M<br>"5<br>ve <u>tens</u> .'<br>7,000<br>700<br>70                                                | /hat is th<br>" in fifty?<br>'five ten:<br>50<br>8,000<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800 | e valu<br>s/fifty<br>)<br>) | ,<br>9,000<br>900<br>90<br>90<br>90 |
| "5" in<br>• 'five<br>zere<br>0.0<br>1,000<br>100<br>10<br>10 | t is the valu<br>zero-point-<br>e hundredti<br>o-point-zer<br>5<br>2,000<br>200<br>20<br>20<br>20 | e of the<br>zero-five?'<br>hs/<br>o-five'<br>'We had<br>3,000<br>300<br>300<br>30<br>30 | d five <u>hundr</u><br>4,000<br>400<br>40<br>40     | r <u>edths</u> . We r<br>5,000<br>500<br>50<br>50 | now have fi<br>6,000<br>600<br>60<br>60 | • 'W<br>"5<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | /hat is th<br>" in fifty?<br>'five ten:<br>50<br>8,000<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800 | s/fifty                     | ,'<br>9,000<br>900<br>90            |


| Spend some time writing equations that reinforce the links between multiplication, division and fractions, e.g. $2 \div 10 = 2 \times \frac{1}{10} = \frac{2}{10} = 2 \times 0.1 = 0.2$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| two or more no<br>25 ÷ 10 and 2<br>25 ÷ 100 and<br>25 ÷ 1,000 an<br>0.37 × 10<br>0.37 × 100<br>0.37 × 1,000                                                                             | n-zero dig<br>25 × 0.1<br>25 × 0.01<br>nd 25 × 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gits; for ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kample:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| but progress to<br>Gattegno chart<br>Example 1 – two                                                                                                                                    | working v<br>o-digit nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | without t<br>mber div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | his suppc<br>ided by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ort. Contin<br>00/multip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ue to rev<br>olied by 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .01:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <i>'We are dividing by one hundred / multiplying by 0.01, so we need to move the digits <u>two places</u> to the <u>right</u>.'</i>                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                                                                         | 1,000s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ÷ 100 ↓                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ↓×0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 2                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| "2" in twenty-                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in .<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | zero-point<br>'two tenth<br>zero-point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>'What is the value of the "5<br/>in zero-point-two-five?'</li> <li>'five hundredths/zero-<br/>point-zero-five'<br/>0.05</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                                                                         | two or more no<br>25 ÷ 10 and 2<br>25 ÷ 100 and<br>25 ÷ 1,000 an<br>0.37 × 10<br>0.37 × 100<br>0.37 × 1,000<br>As before, initia<br>but progress to<br>Gattegno chart<br>Example 1 – two<br>'We are dividing<br>the <u>right</u> .'<br>$\div$ 100 ↓<br>2<br>2<br>100 ↓<br>2<br>2<br>100 ↓<br>2<br>2<br>100 ↓<br>2<br>2<br>100 ↓<br>2<br>2<br>100 ↓<br>2<br>100 ↓<br>2<br>2<br>100 ↓<br>2<br>100 ↓<br>100 ↓<br>2<br>100 ↓<br>100 ↓ | two or more non-zero dig<br>25 $\div$ 10 and 25 $\times$ 0.1<br>25 $\div$ 100 and 25 $\times$ 0.01<br>25 $\div$ 1,000 and 25 $\times$ 0.0<br>0.37 $\times$ 10<br>0.37 $\times$ 100<br>0.37 $\times$ 1,000<br>As before, initially use plat<br>but progress to working of<br>Gattegno chart.<br>Example 1 – two-digit nu<br><i>We are dividing by one hut<br/>the <u>right</u>.'<br/><b>1,000s</b><br/><math>\div</math> 100 <math>\downarrow</math><br/><b>25</b><br/><b>25</b><br/>• <i>'What is the value of the</i><br/><i>"2" in twenty-five?'</i><br/>• <i>'two tens/twenty'</i><br/>20<br/>• <i>'What is the value of the</i><br/><i>"5" in twenty-five?'</i><br/>• <i>'five'</i></i> | two or more non-zero digits; for ex<br>25 ÷ 10 and 25 × 0.1<br>25 ÷ 100 and 25 × 0.01<br>0.37 × 10<br>0.37 × 100<br>0.37 × 1,000<br>As before, initially use place-value<br>but progress to working without t<br>Gattegno chart.<br>Example 1 – two-digit number div<br><i>We are dividing by one hundred / m</i><br><i>the <u>right</u>.'<br/><b>1,000s 100s</b><br/>÷ 100 <math>\downarrow</math><br/><b>25</b> ÷<br/><b>25</b> ×<br/><b>25</b> ×<br/><i>What is the value of the</i><br/><i>"2" in twenty-five?'</i><br/>• <i>'two tens/twenty'</i><br/>20<br/><i>What is the value of the</i><br/><i>"5" in twenty-five?'</i><br/>• <i>'five'</i></i> | two or more non-zero digits; for example:<br>• $25 \div 10$ and $25 \times 0.1$<br>• $25 \div 100$ and $25 \times 0.01$<br>• $0.37 \times 10$<br>• $0.37 \times 100$<br>• $0.37 \times 1,000$<br>As before, initially use place-value charts, so but progress to working without this support Gattegno chart.<br>Example 1 – two-digit number divided by 1<br><i>We are dividing by one hundred / multiplying the <u>right</u>.'<br/><b>25</b> <math>\div</math><br/><b>25</b> <math>\div</math><br/><b>25</b> <math>\div</math><br/><b>25</b> <math>\times</math><br/>• <i>What is the value of the "2" in twenty-five?</i><br/>• <i>'two tens/twenty' 20</i><br/>• <i>What is the value of the "5" in twenty-five?</i><br/>• <i>'five'</i></i> | two or more non-zero digits; for example:<br>• 25 ÷ 10 and 25 × 0.1<br>• 25 ÷ 100 and 25 × 0.01<br>• 0.37 × 10<br>• 0.37 × 100<br>• 0.37 × 1,000<br>As before, initially use place-value charts, so children<br>but progress to working without this support. Contin<br>Gattegno chart.<br>Example 1 – two-digit number divided by 100/multip<br><i>We are dividing by one hundred / multiplying by 0.01, s</i><br>the <u>right</u> .'<br>$\frac{1,000s 100s 10s 1s}{2}$ $\div 100 \downarrow 25 \div 100$ $25 \div 0.01$ • <i>What is the value of the</i><br><i>"2" in twenty-five?</i> '<br>• <i>'two tens/twenty'</i><br>20<br>• <i>What is the value of the</i><br><i>"5" in twenty-five?</i> '<br>• <i>five'</i> | two or more non-zero digits; for example:<br>25 ÷ 10 and 25 × 0.1<br>25 ÷ 100 and 25 × 0.01<br>0.37 × 10<br>0.37 × 100<br>0.37 × 1,000<br>As before, initially use place-value charts, so children can clear<br>but progress to working without this support. Continue to rev<br>Gattegno chart.<br>Example 1 – two-digit number divided by 100/multiplied by 0<br>We are dividing by one hundred / multiplying by 0.01, so we need<br>the <u>right</u> .'<br>$\frac{1,000s 100s 10s 1s 0.1s}{2 5}$ $\div 100 \downarrow 25 \div 00 2$ $25 \div 100$ $25 \times 0.01$ • What is the value of the<br>"2" in twenty-five?'<br>• 'two tens/twenty'<br>20<br>• What is the value of the<br>"5" in twenty-five?'<br>• 'five' | two or more non-zero digits; for example:<br>• 25 ÷ 10 and 25 × 0.1<br>• 25 ÷ 100 and 25 × 0.01<br>• 25 ÷ 1,000 and 25 × 0.001<br>• 0.37 × 10<br>• 0.37 × 100<br>• 0.37 × 1,000<br>As before, initially use place-value charts, so children can clearly see how<br>but progress to working without this support. Continue to review the can<br>Gattegno chart.<br>Example 1 – two-digit number divided by 100/multiplied by 0.01:<br>'We are dividing by one hundred / multiplying by 0.01, so we need to move<br>the <u>right</u> .'<br>$\frac{1,000s 100s 10s 1s 0.1s 0.01s}{2 5}$ $\frac{25 \div 100 =}{25 \times 0.01 =}$ • 'What is the value of the<br>'2'' in twenty-five?'<br>• 'two tens/twenty'<br>20<br>• 'What is the value of the<br>'5'' in twenty-five?'<br>• 'five' | • 25 ÷ 10 and 25 × 0.1 • 25 ÷ 100 and 25 × 0.01 • 25 ÷ 1,000 and 25 × 0.001 • 0.37 × 100 • 0.37 × 100 • 0.37 × 1,000 As before, initially use place-value charts, so children can clearly see how the digit but progress to working without this support. Continue to review the calculation Gattegno chart. Example 1 – two-digit number divided by 100/multiplied by 0.01: <i>We are dividing by one hundred / multiplying by 0.01, so we need to move the digits the right.</i> • 100 ↓ <b>25</b> ÷ 100 = 0. <b>25</b> ÷ 100 = 0. <b>25</b> × 0.01 = 0. • What is the value of the "2" in twenty-five?" • two tens/twenty' • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? • What is the value of the "5" in twenty-five? |  |  |

2019 pilot

| •                                                                                                                                                         | nal fraction<br>and, so we r                                                   | by 1,000:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                        |                                                                           | 07 C                                                                            | )<br>3<br>).8<br>).08<br>).008                                                                                  |                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 3<br>0.3<br>0.03<br>0.003<br>ng a decim<br>one thouse<br>0s 100s                                                                                          | 4<br>0.4<br>0.04<br>0.004<br>nal fraction<br><i>and, so we r</i><br><b>10s</b> | 5<br>0.5<br>0.05<br>0.005<br>by 1,000:<br>need to mov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>0.6<br>0.06<br>0.000<br>ve the digit       | 7<br>0.7<br>0.0<br>5 0.0<br>5 0.0                                         | 2 C                                                                             | 3<br>).8<br>).08<br>).008<br>).008                                                                              | 9<br>0.9<br>0.09<br>0.00                                                                 |
| 0.3<br>0.03<br>0.003<br>ng a decim<br>one thouse<br>0s 100s                                                                                               | 0.4<br>0.04<br>0.004<br>nal fraction<br><i>and, so we r</i><br><b>10s</b>      | 0.5<br>0.05<br>0.005<br>by 1,000:<br>need to mov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6<br>0.06<br>0.000<br>ve the digit            | 0.7<br>0.0<br>5 0.0<br>ts <u>three p</u><br><b>0.01s</b>                  | 7 00<br>07 00<br>007 00                                                         | ).8<br>).08<br>).008<br>).008                                                                                   | 0.9<br>0.09<br>0.00                                                                      |
| 0.03<br>0.003<br>ng a decim<br>one thouse<br>0s 100s                                                                                                      | 0.04<br>0.004<br>nal fraction<br><i>and, so we r</i><br><b>10s</b>             | 0.05<br>0.005<br>by 1,000:<br>need to mov<br><b>1s</b><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.06<br>0.000<br>ve the digit<br><b>0.1s</b>    | 0.0<br>0.0<br>5 0.0<br>5 0.0<br>5 0.0<br>5 0.0<br>5 0.0<br>5 0.0<br>5 0.0 | 07 00<br>007 00                                                                 | ).08<br>).008<br>ne <u>left</u>                                                                                 | 0.09                                                                                     |
| 0.003<br>ng a decim<br>one thouse<br>0s 100s                                                                                                              | 0.004<br>nal fraction<br>and, so we r                                          | 0.005<br>by 1,000:<br>need to more<br><b>1s</b><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>ve the digit                           | 5 0.0                                                                     | 007 C                                                                           | ).008<br>ne <u>left</u>                                                                                         | 0.00                                                                                     |
| ng a decim<br>one thouse<br>0s 100s                                                                                                                       | nal fraction<br>and, so we r                                                   | by 1,000:<br>need to mov<br><b>1s</b><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ve the digit                                    | ts <u>three p</u>                                                         | l <u>aces</u> to th                                                             | ne <u>left</u>                                                                                                  | . /                                                                                      |
| one thouse                                                                                                                                                | and, so we r                                                                   | need to more to more to more the second seco | 0.1s                                            | 0.01s                                                                     |                                                                                 |                                                                                                                 |                                                                                          |
| 3                                                                                                                                                         | 7                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                           |                                                                                 | ×                                                                                                               | ,                                                                                        |
|                                                                                                                                                           |                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                           | 0.001s                                                                          | ↓×                                                                                                              | 1,000                                                                                    |
| 3                                                                                                                                                         | 7                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                               | /                                                                         |                                                                                 | ↓×                                                                                                              | 1,000                                                                                    |
| 3                                                                                                                                                         | /                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                           |                                                                                 |                                                                                                                 |                                                                                          |
|                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                           |                                                                                 | 1                                                                                                               |                                                                                          |
|                                                                                                                                                           | ×                                                                              | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | =                                                                         | 37                                                                              | 0                                                                                                               |                                                                                          |
| of the<br>hree-seven<br>e'                                                                                                                                | n?'                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | "3"  <br>seve<br>• 't                                                     | enty?'<br>hree hund                                                             | undre                                                                                                           |                                                                                          |
| <ul> <li>0.3 300</li> <li>What is the value of the 'What is the value of the '7" in zero-point-three-seven?' '7" in three hundred ar seventy?'</li> </ul> |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                           |                                                                                 |                                                                                                                 | ed and                                                                                   |
| o-seven'                                                                                                                                                  |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                           |                                                                                 | s/seve                                                                                                          | nty'                                                                                     |
|                                                                                                                                                           | e'<br>of the<br>hree-sever<br>ths/<br>-seven'                                  | of the<br>hree-seven?'<br>ths/<br>-seven'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e'<br>of the<br>hree-seven?'<br>ths/<br>-seven' | e'<br>of the<br>hree-seven?'<br>ths/<br>-seven'                           | e' • 't<br>3<br>of the • 'Wh<br>hree-seven?' • '7"<br>ths/ seve<br>-seven' • 's | e' seventy?' ( 'three hund 300 of the hree-seven?' ths/ -seven' ' seventy?' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | e' seventy?' ( 'three hundred' 300 of the hree-seven?' ths/ -seven' ' seven tens/seve 70 |







### **Teaching point 2:**

Measures can be converted from one unit to another using knowledge of multiplication and division by 10/100/1,000.

#### Steps in learning

2:1 In segment 2.19 Calculation: ×/÷ decimal fractions by whole numbers, step 1:13, children briefly applied their understanding of multiplying by decimal fractions to convert units of measure. Now explore conversions between metric units in more detail, using the learning from *Teaching point 1*, above.

Begin by reviewing units of length, since children will be familiar with using a ruler and making connections between millimetres, centimetres and metres. Using actual rulers, or visualisers, marked in centimetres and millimetres, ask children what is the same and what is different about each scale used. Compare a given length (such as 30 cm / 300 mm). Draw attention to the fact that both quantities are the same length, and ask children to explain why this is the case, using their understanding that 1 cm = 10 mm. Highlight the fact that the length is the same, but the unit that is being used to describe length is different for each scale; there are ten times as many millimetres as there are centimetres, in the given length.

Provide children with a variety of objects/lines to measure recording the lengths in both centimetres and millimetres. Then provide children with a measuring strip/ruler that is marked only in millimetres; provide more objects/lines and ask children to measure the lengths in millimetres, then convert each to centimetres. Then work the other way round, with children measuring some object/line-lengths with a strip/ruler marked only in centimetres, and converting the measurements to millimetres.

Now ask children to examine metre sticks, marked in metres, decimetres, centimetres and millimetres. Again, ask them to compare the scales. Children may not have encountered decimetres before, so draw attention to the fact that 1 dm = 10 cm (and that the 'deci' prefix refers to one tenth, so a decimetre is one-tenth of a metre). Compare a given length (e.g. 0.3 m) in the different scales, again asking children to explain the relationship between the different units of measure used to describe the length (e.g. 0.3 m = 3 dm = 30 cm = 300 mm).

Finally, ask children to convert the object/line lengths they measured earlier into both decimetres and metres; children can use the metre sticks to check their answers. Also provide some objects/lines for them to measure in:

• metres, then ask them to convert each into decimetres, centimetres and millimetres or

• decimetres, then ask them to convert each into metres, centimetres and millimetres.

Include some objects/lines that are greater than one metre in length.

Throughout, draw attention to the fact that a given object/line is the same length, irrespective of the unit the length is expressed in. You can use the example problem below to check understanding. It is useful to work out some reference conversions to display in the classroom, or set children the task of completing a conversion chart like the one shown below.

Dòng nǎo jīn:

'Katie says a line that measures 120 mm is longer than a line that measures 10 cm because 120 is greater than 10. Can you improve her explanation?'

| <ul><li> 'What's the same?'</li><li> 'What's different?'</li></ul> |        | ו: |                                  |             |                    |                  |        |                |
|--------------------------------------------------------------------|--------|----|----------------------------------|-------------|--------------------|------------------|--------|----------------|
| 0                                                                  |        |    |                                  |             |                    |                  |        | 1<br>1<br>m    |
|                                                                    | 1<br>2 | 3  | 1<br>4                           | 1<br>5      | і<br>б             | 1 1<br>7 8       | 1<br>9 | 10<br>10<br>dn |
| 0 10                                                               | 20     | 30 | 40                               | 11.<br>50   | 60                 | 70 80            | ) 90   | ) 100<br>cm    |
| 1 m = 10 dm<br>1 m = 100 cm                                        | es coi |    |                                  |             |                    |                  |        |                |
| 1 m = 10 dm                                                        |        |    |                                  | Conve       | rt from            |                  | ]      |                |
| 1 m = 10 dm<br>1 m = 100 cm                                        |        |    | mm                               | Conve<br>cm | rt from<br>dm      | m                |        |                |
| 1 m = 10 dm<br>1 m = 100 cm                                        |        | mm | mm                               |             | [                  | <b>m</b> × 1,000 |        |                |
| 1 m = 10 dm<br>1 m = 100 cm                                        |        |    | <b>mm</b><br>÷ 10<br>or<br>× 0.1 | cm          | dm                 |                  |        |                |
| 1 m = 10 dm<br>1 m = 100 cm                                        | to     | mm | ÷ 10<br>or                       | cm          | <b>dm</b><br>× 100 | × 1,000          |        |                |

| 2:2 | Before moving on to different types of<br>measure (mass and capacity), review<br>the relationship between metres and                                                                                                                                                                                                                                                                                              | Measures conversions – m and km:<br>1 km = 1,000 m                                                                                                                                                                                                                                                                                              |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | kilometres, and ensure that children are<br>able to convert distances from one to<br>the other.                                                                                                                                                                                                                                                                                                                   | $\frac{1}{1,000}$ km = 1 m<br>0.001 km = 1 m                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|     | When converting distances, encourage<br>children to explain their reasoning, as<br>exemplified opposite. Continue to<br>encourage children to sense-check<br>their answers; for example, when<br>converting 1.75 km to metres children<br>can reason whether the number will<br>get larger or smaller: <i>'Metres are smaller<br/>than kilometres, so there will be more<br/>metres in 1.75 km than there are</i> | <ul> <li>Converting from kilometres to metres:</li> <li>'Convert 1.75 km into metres.'</li> <li>'One kilometre is equal to one thousand metres.'</li> <li>1 km = 1,000 m</li> <li>'So, to convert one-point-seven-five kilometres into metres, we need to multiply by one thousand.'</li> <li>distance in m = distance in km × 1,000</li> </ul> |  |  |  |  |
|     | <i>kilometres.'</i><br>It is useful to work out some reference<br>conversions to display in the classroom:                                                                                                                                                                                                                                                                                                        | $= 1.75 \times 1,000$                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|     | <ul> <li>1 km = 1,000 m</li> <li>0.1 km = 100 m</li> <li>0.01 km = 10 m</li> <li>0.001 km = 1 m</li> </ul>                                                                                                                                                                                                                                                                                                        | <ul> <li>'When a number is multiplied by one thousand, the digits move three places to the left.'</li> <li>1.75 × 1,000 = 1,750 m</li> </ul>                                                                                                                                                                                                    |  |  |  |  |
|     | Also draw children's attention to the<br>movement of the digits, when<br>converting. Look at the ones digit<br>(when it is non-zero) and notice how,<br>when converting 1.75 km into metres,<br>for example, this digit moves to the<br>thousands place:                                                                                                                                                          | <ul> <li>Converting from metres to kilometres:</li> <li>'Convert 346 m into kilometres.'</li> <li>One metre is equal to one thousandth of one kilometre.</li> <li>1m = 1/1,000 km</li> <li>1 m = 0.001 km</li> </ul>                                                                                                                            |  |  |  |  |
|     | <ul> <li>'In "1.75", the '1' represents one <u>one</u>; in "1750" the '1' represents one <u>thousand</u>.'</li> <li>'We had "1.75" <u>ones</u>; we now have "1.75" <u>thousands</u>.'</li> <li>This is a useful strategy for checking that answers are sensible when converting from one metric unit to another, so encourage children to use this in the subsequent steps.</li> </ul>                            | <ul> <li>'So, to convert three hundred and forty-six metres into kilometres, we need to divide by one thousand (or multiply by 0.001).' distance in km = distance in m ÷ 1,000 = 346 ÷ 1,000</li> <li>'When a number is divided by one thousand, the digits move three places to the right.' 346 ÷ 1,000 = 0.346</li> </ul>                     |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                   | so<br>346 m = 0.346 km                                                                                                                                                                                                                                                                                                                          |  |  |  |  |

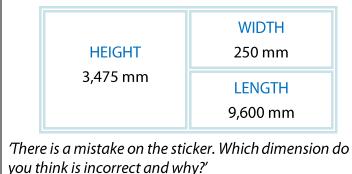
| 2:3 | Now, in a similar way, review the<br>relationship between grams and<br>kilograms. You could work practically,<br>by weighing a given item and<br>recording the mass in different units;<br>for example, you could place a 500 g<br>bag of sugar on a balance, and toggle<br>between grams and kilograms, drawing<br>attention to the fact that the mass has<br>remained the same but the unit has<br>changed.<br>As a class work out some reference<br>conversions to display in the classroom:<br>• 1 kg = 1,000 g<br>• 0.1 kg = 100 g<br>• 0.001 kg = 10 g<br>• 0.001 kg = 1 g<br>Draw attention to the similarity with<br>the reference conversions for metres<br>and kilometres in the previous step.<br>Then practise converting masses from<br>grams to kilograms and vice versa. As in<br>the previous steps, continue to<br>encourage children to sense check their<br>answers; for example, <i>'Kilograms are<br/>larger than grams, so there will be fewer<br/>kilograms in 725 g than there are grams.'</i> | Measures conversions – g and kg:<br>1 kg = 1,000 g<br>$\frac{1}{1,000}$ kg = 1 g<br>0.001 kg = 1 g<br>Converting from kilograms to grams:<br>'Convert 2.5 kg into grams.'<br>1 kg = 1,000 g<br>mass in g = mass in kg × 1,000<br>= 2.5 × 1,000 $\downarrow$ 'Move the digits<br>= 2,500 $\downarrow$ 'Move the digits<br>three places to<br>the left.'<br>So, 2.5 kg = 2,500 g<br>Converting from grams to kilograms:<br>'Convert 725 g into kilograms.'<br>1g = $\frac{1}{1,000}$ kg 1 g = 0.001 kg<br>mass in kg = mass in g ÷ 1,000<br>= 725 ÷ 1,000 $\downarrow$ 'Move the digits<br>= 0.725 $\downarrow$ 'Move the digits<br>three places to<br>three |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:4 | Repeat the process for litres, decilitres,<br>centilitres and millilitres. You could<br>work practically by transferring a given<br>volume of water between different<br>containers, each marked in different<br>units.<br>Children may not have encountered<br>decilitres and centilitres before, so<br>make sure you clearly define these<br>units. Draw attention to the meaning of<br>the prefixes 'deci' (one-tenth) and 'centi'<br>(one-hundredth), comparing with how<br>these prefixes were used before 'metre'<br>in step 2:1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| <ul> <li>Throughout, draw attention to the fact that a given quantity of liquid has the same capacity, irrespective of the unit it is expressed in; you can use the example problem about measuring cylinders, on the next page, to check understanding.</li> <li>As in step 2:1, set children the task of completing a conversion chart like the one shown opposite. See if children can notice/explain the fact that this chart is</li> </ul> | Summary of measures conversions – m $\ell$ , $c\ell$ , $d\ell$ and $\ell$ :<br>1 $\ell$ = 10 $d\ell$<br>1 $\ell$ = 100 $c\ell$<br>1 $\ell$ = 1,000 m $\ell$<br>Convert from<br>m $\ell$ $c\ell$ $d\ell$ $\ell$ |         |                                                                   |                       |                        |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------|-----------------------|------------------------|------------------------------------------------------|
| identical to the one in step 2:1, except<br>the 'm' representing metres has been<br>changed to an ' $\ell$ ', representing litres,<br>throughout.                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                | mℓ      |                                                                   | × 10                  | × 100                  | × 1,000                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to                                                                                                                                                                                                             | cl      | ÷ 10<br>or<br>× 0.1                                               |                       | × 10                   | × 100                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to                                                                                                                                                                                                             | dℓ      | ÷ 100<br>or<br>× 0.01                                             | ÷ 10<br>or<br>× 0.1   |                        | × 10                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                | l       | ÷ 1,000<br>or<br>× 0.001                                          | ÷ 100<br>or<br>× 0.01 | ÷ 10<br>or<br>× 0.1    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 'Con                                                                                                                                                                                                           | vert 1. | g from litres<br>575 <i>l into r</i> r<br>00 m <i>l</i>           |                       | es:                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ca                                                                                                                                                                                                             | pacity  | $f \text{ in } \mathfrak{m}\ell = ca$ $=$ $= 1,575 \text{ m}\ell$ | 1.575<br>575          | 2 × 1,000<br>× 1,000 ↓ | 'Move the<br>digits three<br>places to<br>the left.' |

Converting from millilitres to litres: 'Convert 175 ml into litres.'  $1 m\ell = \frac{1}{1000}\ell$  $1 \text{ m}\ell = 0.001 \ell$ capacity in  $\ell$  = capacity in m $\ell$  ÷ 1,000 ÷1,000 ↓ 175 = 'Move the = 0.175 digits three places to the right.' So, 175 m $\ell$  = 0.175  $\ell$ Comparing a given volume of liquid: • 'What's the same?' • 'What's different?' - 1ℓ -10dℓ -100 cℓ 9 90 8 80 7 70 60 б 5 50 40 4 3 30 2 20 10 1

- 2:5 To complete this teaching point, provide children with practice, including:
  - comparing and ordering measurements given in different units, encouraging children to make sensible choices about which common unit to convert to before comparing
  - contextual problems where children need to convert measures to a common unit before calculating, for example:
    - 'I need 10 kg of flour. I already have 3,200 g. How much more flour do I need?'
    - 'Some children drank 3 l of water between them. Each child drank a 250 ml glass of water. How many children drank?'
    - 'Sean bought 850 kg of sand to build a wall. He used 75,000 g on Monday and 250,000 g on Tuesday. How much sand was left at the end of Tuesday?'
    - 'An aeroplane travels 150 m in one second. How many kilometres will it travel in one hour?'

Comparing and ordering measures in different units:


- 'Which is more, 505 ml or 0.5 l?'
- 'Year 6 have grown some sunflowers. These are the heights of their plants:'

| Plant | Height |
|-------|--------|
| А     | 286 cm |
| В     | 3.40 m |
| С     | 3.14 m |
| D     | 260 cm |

- 'Put the plants in order from shortest to tallest.'
- *'What is the difference in height between the tallest and the shortest plant?'*
- 'What is the average (mean) height of the sunflowers?'

#### Dòng nǎo jīn:

'A bus company has made a sticker showing the dimensions of their buses.'

